高层建筑结构的设计特点及体系探析_高层建筑结构体系特点
发布时间:2020-02-15 来源: 散文精选 点击:
对高层建筑设计而言。设计前期的初步结构方案需通过结构软件的计算分析。判断该方案是否正确与合理。从而对其进行有针对性的修改和优化。文章结合具体实例。介绍了分析判断计算结果的主要几项内容及可采取的相应优化措施,以提高设计的准确性和工作效率。
随着我国经济和社会的快速发展,高层建筑的数量日益增多。这些高层建筑大多采用钢筋混凝土剪力墙或剪力墙一简体结构。对高层钢筋混凝土结构设计而言,在设计前期,通过建筑师与结构工程师的密切配合,正确运用结构概念设计理论,优选结构体系,并进行总体结构布置,可以初步得出一个性能良好、造价经济的结构方案,为后续结构设计打好基础。然而,初步设计方案的优劣还需通过对分析软件的计算结果进行研究和判断,来确定结构设计是否合理,以及是否需要进一步优化。因此,对计算结果进行分析研究,是一项很重要的工作。本文结合某高层住宅设计的实例,对分析软件SATWE的计算结果的几项主要内容进行分析判断,并据此对初步结构方案进一步优化,提高工作效率和设计的准确性。
1.高层建筑结构设计特点
1.1水平荷载成为决定因素。一方面,因为楼房自重和楼面使用荷载在竖构件中所引起的轴力和弯矩的数值,仅与楼房高度的一次方成正比;而水平荷载对结构产生的倾覆力矩,以及由此在竖构件中引起的轴力,是与楼房高度的两次方成正比;另一方面,对某一定高度楼房来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随结构动力特性的不同而有较大幅度的变化。
1.2轴向变形不容忽视。高层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩值减小,跨中正弯矩之和端支座负弯矩值增大;还会对预制构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安全的结果。
1.3侧移成为控制指标。与较低楼房不同,结构侧移已成为高楼结构设计中的关键因素。随着楼房高度的增加,水平荷载下结构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。
1.4结构延性是重要设计指标。相对于较低楼房而言,高楼结构更柔一些,在地震作用下的变形更大一些。为了使结构在进入塑性变形阶段后仍具有较强的变形能力,避免倒塌,特别需要在构造上采取恰当的措施,来保证结构具有足够的延性。
2.高层建筑的结构体系
2.1框架-剪力墙体系。当框架体系的强度和刚度不能满足要求时,往往需要在建筑平面的适当位置设置较大的剪力墙来代替部分框架,便形成了框架-剪力墙体系。在承受水平力时,框架和剪力墙通过有足够刚度的楼板和连梁组成协同工作的结构体系。在体系中框架体系主要承受垂直荷载,剪力墙主要承受水平剪力。框架-剪力墙体系的位移曲线呈弯剪型。剪力墙的设置,增大了结构的侧向刚度,使建筑物的水平位移减小,同时框架承受的水平剪力显著降低且内力沿竖向的分布趋于均匀,所以框架-剪力墙体系的能建高度要大于框架体系。
2.2剪力墙体系。当受力主体结构全部由平面剪力墙构件组成时,即形成剪力墙体系。在剪力墙体系中,单片剪力墙承受了全部的垂直荷载和水平力。剪力墙体系属刚性结构,其位移曲线呈弯曲型。剪力墙体系的强度和刚度都比较高,有一定的延性,传力直接均匀,整体性好,抗倒塌能力强,是一种良好的结构体系,能建高度大于框架或框架-剪力墙体系。
2.3筒体体系。凡采用筒体为抗侧力构件的结构体系统称为筒体体系,包括单筒体、筒体-框架、筒中筒、多束筒等多种型式。筒体是一种空间受力构件,分实腹筒和空腹筒两种类型。实腹筒是由平面或曲面墙围成的三维竖向结构单体,空腹筒是由密排柱和窗裙梁或开孔钢筋混凝土外墙构成的空间受力构件。筒体体系具有很大的刚度和强度,各构件受力比较合理,抗风、抗震能力很强,往往应用于大跨度、大空间或超高层建筑。
3.高层建筑结构静力分析方法
3.1 框架-剪力墙结构
框架-剪力墙结构内力与位移计算的方法很多,大都采用连梁连续化假定。由剪力墙与框架水平位移或转角相等的位移协调条件,可以建立位移与外荷载之间关系的微分方程来求解。由于采用的未知量和考虑因素的不同,各种方法解答的具体形式亦不相同。框架-剪力墙的机算方法,通常是将结构转化为等效壁式框架,采用杆系结构矩阵位移法求解。
3.2剪力墙结构
剪力墙的受力特性与变形状态主要取决于剪力墙的开洞情况。单片剪力墙按受力特性的不同可分为单肢墙、小开口整体墙、联肢墙、特殊开洞墙、框支墙等各种类型。不同类型的剪力墙,其截面应力分布也不同,计算内力与位移时需采用相应的计算方法。剪力墙结构的机算方法是平面有限单元法。此法较为精确,而且对各类剪力墙都能适用。但因其自由度较多,机时耗费较大,目前一般只用于特殊开洞墙、框支墙的过渡层等应力分布复杂的情况。
3.3筒体结构
筒体结构的分析方法按照对计算模型处理手法的不同可分为三类:等效连续化方法、等效离散化方法和三维空间分析。等效连续化方法是将结构中的离散杆件作等效连续化处理。等效离散化方法是将连续的墙体离散为等效的杆件,以便应用适合杆系结构的方法来分析。比等效连续化和等效离散化更为精确的计算模型是完全按三维空间结构来分析筒体结构体系,其中应用最广的是空间杆-薄壁杆系矩阵位移法。
3.4混凝土构件配筋简图
任何一个建筑结构都要同时承受垂直荷载和风产生的水平荷载,还要具有抵抗地震作用的能力。在较低楼房中,往往是以重力为代表的竖向荷载控制着结构设计,水平荷载产生的内力和位移很小,对结构的影响也就较小;但在较高楼房中尽管竖向荷载仍对结构设计产生着重要影响,水平荷载却起着决定性的作用。随着楼房层数的增多,水平荷载愈益成为结构设计中的控制因素。一方面,因为楼房自重和楼面使用荷载在竖构件中所引起的轴力和弯矩的数值,仅与楼房高度的一次方成正比;而水平荷载对结构产生的倾覆力矩,以及由此在竖构件中所引起的轴力,是与楼房高度的两次方成正比;另一方面对某一高度楼房来说,竖向荷载的风荷载和地震作用,其数值随结构动力特性的不同而有较大幅度的变化。混凝土构件配筋简图是反映梁、柱、墙配筋信息的,设计较为合理的结构一般不会有太多的超限截面,基本上应符合以下规律。①柱、墙大部分为构造配筋,剪力墙符合截面抗剪要求;②梁基本上无超筋,截面不满足抗剪要求或抗扭超限不多。在本结构的计算结果中,除个别的梁有超筋现象外(地震作用引起)。均满足上述要求,说明结构构件布置及截面尺寸选取是合适的,仅对个别超筋梁截面进行调整。
总之,在高层建筑结构设计中,首先运用概念设计理论选定建筑适合的结构体系及结构构件布置,然后应用分析软件对初步结构方案进行计算,按上述几个方面内容对计算结果进行分析研究,可判断出原结构设计不合理之处,这样对建筑结构方案可进行有针对性的修改和优化,使结构设计更趋向合理和经济。
参考文献:
[1]徐至钧,赵锡宏.超高层建筑结构设计与施工[M].机械工业出版社2007.
[2]周云.高层建筑结构设计[M].武汉理工大学出版社2006.
作者简介:武洪(1978―),男,重庆人,工程师。
(作者单位:重庆市轨道交通设计研究院有限责任公司)
相关热词搜索:探析 建筑结构 高层 高层建筑结构的设计特点及体系探析 25层楼房的最佳楼层 高层建筑结构体系ppt
热点文章阅读