基于LS-SVM的烤烟烟叶产地判别
发布时间:2019-08-24 来源: 人生感悟 点击:
摘要:为了探索一种快速有效的烤烟烟叶产地鉴别方法,利用近红外光谱技术结合最小二乘支持向量机(LS-SVM)对烤烟烟叶的产地进行了判别。选择云南、湖北、河南三地不同等级烤烟烟叶作为研究对象,对原始光谱数据进行平滑和附加散射校正(MSC)预处理后再进行主成分分析,选择4~12个主成分作为输入变量进行LS-SVM建模。结果显示,该LS-SVM模型预测效果较好,预测相关系数rp≥0.990 7,预测标准误差(SEP)和预测均方根误差(RMSEP)分别为1.755 1和1.737 3,优于偏最小二乘回归(PLS)的预测结果,基于LS-SVM的近红外光谱技术能够很好地对烟叶产地进行判别。
关键词:烟叶;产地判别;近红外光谱;最小二乘支持向量机
中图分类号:TN219 文献标识码:A 文章编号:0439-8114(2012)03-0583-03
Identification of Producing Area of Tobacco Leaf Based on LS-SVM
ZHANG Ying1a,1b,HE Li-yuan1b,YE Ying-ze1c,WU Zhao-hui2
(a. College of Science; b. College of Resources and Environment; c. Network Center, 1.Huazhong Agricultural University, Wuhan 430070, China; 2. Tobacco Research Center of Henan Academy of Agricultural Sciences, Xuchang 461000, Henan, China)
Abstract: In order to explore a fast and efficient method which determines the producing area of tobacco leaf, near-infrared reflectance spectroscopy with least squares-support vector machines (LS-SVM) was applied to determine producing area of tobacco leaf. Three producing areas including Yunnan, Hubei and Henan were selected as the research objects. As the pretreatments of the optimal smoothing way, moving average with three segments and multiplication scatter correction (MSC) were applied to reduce the noise of the spectra. After the principle component analysis, 4 to 12 principal components (PCs) were chosen as the inputs of LS-SVM models. The Results show that the prediction performance of the LS-SVM model with 12 PCs is better than partial least square(PLS) model. Its correlation coefficient of prediction set (rp) is 0.990 7, standard error of prediction (SEP) is 1.755 1, and root mean square error of prediction (RMSEP) is 1.737 3. It is concluded that NIR spectroscopy with LS-SVM is a feasible method to determine the producing area of tobacco leaf.
Key words: tobacco leaf; origin discriminant; NIR spectroscopy; least squares-support vector machines (LS-SVM)
烟草是我国重要的经济作物,烟叶的品质与遗传因素、栽培措施、调制技术和产地环境等密切相关。其中,产地环境(海拔、温湿度、气候条件等)对烟叶品质的影响极为明显,也是构成不同品牌卷烟特有风格的基础,但不同产地的烟叶特征迄今难以量化描述。目前,对烤烟烟叶产地的判别除依赖感官评定外,需要对其化学成分进行分析,判别过程费时、费力。因此,研究一种能够快速、准确地对烤烟烟叶产地进行判别的方法非常必要。
Maha等[1]采用神经元网络方法对美国本土及国外1 000多个烟叶样品的近红外光谱(NIRs)信息进行分析,对本国烟叶取得了很好的模式识别结果。国内研究人员曾采用NIR法预测了烟草根、茎、叶中的蛋白质、总糖、总氮、总植物碱等[2,3],采用主成分分析的马氏距离法判别烟叶产地归属,获得了较佳的识别准确率[4]。但上述研究均需要对烟叶进行切丝过筛,属于有损检测且费时费力。用NIR法专门针对收购环节进行完整烟叶品质分析预测烟叶产地尚无研究报道。试验采用近红外波段(867~258 9 nm)进行光谱扫描,应用最小二乘支持向量机(LS-SVM),建立了LS-SVM判别分析组合模型,实现了烤烟烟叶产地的快速准确判别。
1 材料与方法
1.1 仪器及参数
试验使用光谱检测设备是Ocean Optics公司的NIR256-2.5光纤光谱仪,配套的QBIF600-VIS-BX白金级Y形分叉光导纤维探头,仪器光谱采样间隔6 nm,测定波长867~2 589 nm,光纤探测器与样品垂直,暗室温度18~22 ℃,相对湿度22%~25%,以14.5 V、50W卤素灯为惟一光源,光源与样品夹角45°。开机预热1 h后进行光谱扫描,采样方式是漫反射,采样软件是机器自带的Spectra Suite。分析软件采用ASD View Spec Pro、Unscramble V9和DPS(Data Procession System for Practical Statistics)。积分时间设置为250 mm,平滑度设置为9,平均次数为3,即对每个样品自动扫描3次取平均值。
1.2 样本制备
收集了2010年10月云南、河南、湖北三省的烟草公司提供的已由专家人工定级的烟叶。为保证试验结果的代表性,每个产地烟叶按7个分组每组1~4个等级随机选择90个样本。根据文献[5]报道,直接将烟叶样品平铺置于载物台上,采用漫反射模式采集近红外光谱,光谱扫描稳定后进行数据采集。保存3条光谱曲线,以其平均光谱作为最终的反射光谱。从全部270个样本中,每个产地随机选择30个共90个样本作为预测集,剩余的180个样本作为建模集。
热点文章阅读