漆永祥:从《汉学师承记》看西学对乾嘉考据学的影响

发布时间:2020-06-03 来源: 美文摘抄 点击:

  

  清嘉庆时期学者江藩(1761—1830),以纂《汉学师承记》一书而闻名于世。该书突出表彰了清代尤其是清中叶考据学家的经学研究成就。包括江藩在内的这部分学者中,在致力经史的同时,有的又兼擅天文、历法与数学,他们或中西兼通,或专明中法,取得了相当出色的成就。本文即从《师承记》对当代考据学家天算学成就的记述以及他们对西学的认识等方面,来考察西学对乾嘉考据学的影响。

  

  一、江藩本人的天算学观念与水平

    

  江藩,初名帆,字雨來,亦作豫來,后字子屏,一作国屏,号郑堂,晚字节甫,又自署竹西词客、炳烛老人等,祖籍安徽旌德,后為甘泉(今江蘇揚州)人。少受业于薛起凤(1734—1774)、汪缙(1725—1792),学诗古文词;
后师从惠棟(1697—1758)弟子余萧客(1729—1777)与江声(1721—1799),治汉学,为惠氏再传弟子。又曾从朱筠(1729—1781)、王昶(1724—1806)游,在京時又久馆于王杰(1725—1805)府邸。江氏既转益多师,故其学博而能精,于经史、小学、词章等兼擅其能。然而就天算学而言,江氏并无有师承,其业师余萧客、江声以及太老师惠栋皆不精此学。虽然惠栋之父士奇(1671-1741)精于历算,但惠栋本人在此点上并未能继承家学。江藩曾曰:

  如松崖徵君虽淹贯经史,博综群书,然于算数、测量则略知大概而已。此乃余古农师之言也。[1]

  余萧客叙述自己的老师,当然不会是故意贬抑,我们从惠栋的著述中,也看不出他在天算学方面有何特出的成就。即余萧客、江声二人而论,余氏的代表作为《古经解钩沈》30卷,江声代表作《尚书集注音疏》12卷,皆未有天算学专著。江藩的天算学,自称是得之于与他同时的扬州学者汪中之启发与鼓励,江氏《汉学师承记》记其与焦循之交往时曾曰:

  藩弱冠时即与君定交,日相过从,尝谓藩曰:“予于学无所不窥,而独不能明九章之术。近日患怔忡,一构思则君火动而头目晕眩矣。子年富力强,何不为此绝学。”以梅氏书见赠。藩知志位布策,皆君之教也。[2]

  江藩受汪氏鞭策才治算学,但汪中也正如他自己所说对此学不甚专门,其《述学》中涉及此方面的问题很少。但江藩却与当时治天算有名的“谈天三友”――焦循(1763—1820)、汪莱(1768—1813)与李锐(1773—1817)都有着密切的关系。江氏与焦循皆以淹博经史,为艺苑所推,时称“二堂”[3]。江、焦又与黄承吉(1771—1842)、李钟泗(1771-1809)嗜古同学,辄有“江焦黄李”之目。[4]江藩与汪莱为“密友”之关系。[5]他与李锐也是学友,当时的两广总督阮元(1764-1849)得知李氏已卒的消息,还是江藩告知于他的。[6]同时,江藩与精于天算学的凌廷堪(1757-1809)、阮元也是挚友关系。江藩在“志位布策”方面有所提高的话,应该与和他们的交流与切磋有很大关系。

  江藩的天算学观点,与时人并无二致。一方面在谈到历学与算学之关系时,也认可西方天算学的成就。他说:

  历学之不明,由算学之不密,虽精如祖冲之、耶律楚材、郭守敬、赵友钦,而犹不密者,算法之不备也。自欧罗巴利玛窦、罗雅谷、阳玛诺诸人入中国,而算法始备,历学始明。[7]

  另一方面,江藩也有西学中源的观点,他曾论“夫句股,《九章》之一也。以御方圆之数,历象用以割圆、八线等术,皆出于句股。”[8]至于江氏本人的天算学研究与成绩,我们现在可考见的是他在北京游幕期间,曾与凌廷堪共客王杰府第,研治天算。凌廷堪云:

  乾隆癸丑,廷堪从座主韩城公于滦阳,公下直之余,恒谈论至夜分,往往谓廷堪曰:“顾亭林云:三代以上,人人皆知天文。‘七月流火’,农夫之辞也。‘三星在天’,妇人之语也。‘月离于毕’,戍卒之作也。‘龙尾伏晨’,儿童之谣也。后世文人学士有问之而茫然者,此亦儒者之所耻也。”语次辄举象纬之名以授廷堪,而未甚究心也。及寓公京邸,公季子更叔承家学,复相指示,遂与旌德江国屏共学焉。乃取《灵台仪象志》、《协纪方书》及《明史》、《五礼通考》互为比勘,昼则索之以图,夜则证之于天,阅日四旬,大纲精得。[9]

  此所谓江国屏即江藩。另外我们从江氏流布的文章中,也可得到数篇与天算学有关的文字。嘉庆三年,焦循《释椭》1卷完成,该书专门讨论传入中国的意大利天文学家卡西尼(G.D.Cassini,1625-1721)学说中的椭圆知识。江氏曾为制序,认为昔年秦蕙田《五礼通考》中《观象授时》一门虽出戴震之手,但未能述及椭圆,是其缺失,今读焦氏书“以求日躔月离交食诸轮,无晦不明,无隐不显矣”[10]。江藩在和阮元通信时,曾经对程瑶田“倨句之形生于圆半周图说”表示不能苟同。另有《毛乾乾传》,记载明末清初江西星子人毛乾乾“于学无所不窥,尤精推步,通中西之学”。毛氏明亡后隐阳羡山中,梅文鼎(1633-1721)造访,与之论“周径之理,方圆相穷相变诸率,先后天八卦位次不合者,文鼎以师事之”。[11]除此而外,江氏并无其他天算学的专门著述与文章传世。

  由以上论述可知,就江藩本人而言,他有一定的天算学知识,也对当时西方传入的天算学说有大致的了解,同时也与当时天算学专家多有往来,但从江氏所论及其著述的情况来看,其天算学观念与水平亦仅此而已!

  

  二、《汉学师承记》所载考据学家之天算学成就与著述

  

  《汉学师承记》一书所记载的清代考据学家也不乏精通天算学的大师与专家,如黄宗羲(1610-1695)、陈厚耀(1648-1722)、惠士奇(1671-1741)、江永(1681-1762)、褚寅亮(1715-1790)、戴震(1723-1777)、钱大昕(1728-1804)、孔广森(1752-1786)、凌廷堪、焦循、阮元、汪莱、李锐等人。江藩对他们的天算学成果之记载,或略或详,笔者在此试一一加以论析。

  黄宗羲 《汉学师承记》论黄宗羲在明末“日夕读书,《十三经》、《二十一史》及百家、九流、天文、历算、道藏、佛藏,靡不究心焉”。在叙列黄氏著述时称有关天算学的有“《授时历故》一卷、《大统历推》一卷、《授时历假如》一卷、《西历假如》一卷、《回历假如》一卷、《气运算法》、《勾股图说》、《开方命算》、《测圆要》诸书”。[12]至于黄氏具体成就与特点,《师承记》中并无发明。黄氏数学著作今皆不传,其《授时历故》4卷,是对元代《授时历》的研究,其“水平未超过《授时历》,但是他的贡献是保留了前人的思想方法,并弥补某些不足”。[13]

  陈厚耀 陈厚耀是《师承记》中所记人物在清初治天算学最为专门的学者。《师承记》记载他曾从梅文鼎受历算,通中西之术。由李光地(1642—1718)推荐给康熙皇帝(1653-1722),召见时,帝命其绘制三角形图并求其中线之长,回答有关弧以及弧所对弦等问题的计算方法。厚耀具劄进呈,称旨。后又特命来京,厚耀提出定步算诸书,以惠天下,康熙帝采纳了他的意见,召梅瑴成等入京共同修书,书成特授陈氏为翰林院编修。康熙六十年(1721),厚耀等修成《律历渊源》100卷,其中《数理精蕴》53卷、《历象考成》42卷、《律吕正义》5卷,这些书籍尤其是《数理精蕴》的出版,基本上是一部初等数学全书,就其资料来源而论,从整体上说是西方数学著作的编译作品。陈氏另有《陈厚耀算书》,包括《勾股图解》、《算法原本》、《直线体》、《堆垛》与《借根方比例》等,其中大部分被《数理精蕴》所采纳。[14]江藩书中,还重点介绍了陈氏《春秋长历》10卷,此书乃纠补杜预《长历》而作,对研究《春秋》时天文与历法等有重要的参考价值。

  惠士奇 江藩称惠氏“幼时读《廿一史》,于《天文》、《乐律》二志,未尽通晓。及官翰林,因新法究推步之原,著《交食举隅》二卷。”[15]案惠氏《交食举隅》未见传本,诸家著录,或曰一卷,或曰二卷,或曰三卷,当为研究日月食的专著。惠氏《春秋说》卷11末凡列春秋时期自鲁隐公三年(前720)至定公十五年(前495)间所发生的日食共34次,并言“详见《交食举隅》”。可见确有成书,后来大概散佚了。

  江永 作为清中叶考据学派的代表人物,江永在天算学方面的著述有《推步法解》5卷以及《七政衍》、《金水二星发微》、《冬至权度》、《恒气注历辨》、《岁实消长辨》、《历学补论》、《中西合法拟草》各1卷。他对梅文鼎的学问十分推崇,对其历算著作也有深入研究,但对梅氏一些观点存有疑问和不同认识,特别是对梅氏以中法牵强附会西法的说法多不认同。江永在其《梅翼》(又名《数学》)8卷中专门讨论梅氏的著作,其卷2“岁实消长辨”系对梅氏“岁实消长”论之质疑。江藩论江永辨梅文鼎之说曰:

  其论宣城梅氏所言岁实消长之误曰:“日平行于黄道,是为恒气恒岁实,因有本轮、均轮、高冲之差而生盈缩,谓之视行。视行者,日之实体所至;
而平行者,本轮之心也。以视行加减平行,故定气时刻,多寡不同;
高冲为缩末盈初之端,岁有推移,故定气时刻之多寡,且岁岁不同,而恒气恒岁实,终古无增损也。当以恒者为率,随其时之高冲以算定气,而岁实消长可勿论。犹之月有平朔平望之策,以求定朔定望,而此月与彼月,多于朔策几何,少于朔策几何,俱不计也。”[16]

  案此段文中所谓本轮、均轮、高冲、盈缩等,都是自明末清初以来从西方传入的丹麦天文学家第谷(B.Tycho,1546-1601)的天文体系概念。它采用本轮、均轮等一套小轮系统来解释天体运动的变化。此所谓岁实即回归年长度,岁实消长是指它将随着年代推移发生缓慢变化。宋代《统天历》与元代《授时历》都采用了所谓“消长法”计算回归年长度:

  T =365.2425-0.000002t(t为从初始起用年开始经过的时间)

  按此法计算,将逐渐缩短,亦即岁实消长。对于此公式之物理意义,当时历算家从未给出过解释。由于式中第二项的值非常小,自明朝《大统历》后,即忽略不予考虑。梅氏是消长法的支持者,但对岁实单方向减小持怀疑态度。他接触到西方天文知识后,开始从物理意义方面对消长法进行探讨,提出了自己的看法。江永不同意梅氏的观点,因此专题加以讨论。日本学者中山茂认为,直到江永“才首次给予消长法以近代化的评价”[17]。

  褚寅亮 《汉学师承记》在叙述褚寅亮天算学成就时曰:

  寅亮精天文、历算之术,尤长于句股和较相求诸法,作《句股广问》三卷。钱少詹著《三统术衍》,寅亮校正刊本误字,如“中月相求六扐之数”句,“六扐”当作“七扐”;
“推闰余所在,加十得一”句,“加十”当作“加七”。少詹服其精审。[18]

  案褚氏《句股广问》一书,今亦无传。所谓句股和较相求诸法,和指相加之和,较为相减之差。《数理精蕴下编》卷12有“句股和较相求诸法”篇,主要讨论直角三角形和句股弦及其与差的相求问题。如设句为a,股为b,则句股较为b-c,句股和为a+b,句股弦c-a,还可以有其他和较关系,这样句、股、弦及其和较共有13种情形。如果已知其中两个条件(两种情形),即可求出其它未知的情形。褚氏之书,大概也是在《精理精蕴》基础上的推演与释解而已。

  戴震 江藩记述戴震的天算学著作有《原象》1卷、《勾股割圜记》3卷、《策算》1卷、《九章补图》1卷、《古历考》2卷、《历问》2卷等。论其成就时曰:

  《周髀》言“北极璿玑四游”,又言“正北极枢璿玑之中”,后人多疑其说。解之曰:“正北极者,《鲁论》之北辰,今人所谓赤道极也。北极璿玑者,今人所谓黄道极也。正北极者,左旋之枢,北极璿玑,每昼夜环之而成规。冬至夜半,在正北极下,是为北游所极;
日加卯之时,在正北极之左,是为东游所极;
日加午之时,在正北极之上,是为南游所极;
日加酉之时,在正北极之右,是为西游所极:此璿玑之一日四游所极也。冬至夜半,起正北子位;
昼夜左旋一周,而又过一度,渐进至四分周之一,则春分夜半,为东游所极;
又进至夏至夜半,为南游所极;
又进至秋分夜半,为西游所极:此璿玑之一岁四游所极也。《虞夏书》‘在璿玑玉衡,以齐七政’。盖设璿玑以拟黄道极,世失其传也。”[19]

  案戴氏此说,问题多多,笔者在此稍加释解。《论语·为政》所指“北辰”,清以前学者皆以为赤道北极。晚近注《论语》者则多解为北极星,但孔子时代北极附近没有明亮的星,因此将其释为北极星,(点击此处阅读下一页)

相关热词搜索:汉学 考据学 西学 师承 影响

版权所有 蒲公英文摘 www.zhaoqt.net