基于颜色和纹理特征的新疆维吾尔医植物药材图像特征提取与判别分析

发布时间:2019-08-29 来源: 美文摘抄 点击:

http://img1.qikan.com.cn/qkimages/zyxx/zyxx201601/zyxx20160118-1-l.jpghttp://img1.qikan.com.cn/qkimages/zyxx/zyxx201601/zyxx20160118-2-l.jpghttp://img1.qikan.com.cn/qkimages/zyxx/zyxx201601/zyxx20160118-3-l.jpghttp://img1.qikan.com.cn/qkimages/zyxx/zyxx201601/zyxx20160118-4-l.jpghttp://img1.qikan.com.cn/qkimages/zyxx/zyxx201601/zyxx20160118-5-l.jpghttp://img1.qikan.com.cn/qkimages/zyxx/zyxx201601/zyxx20160118-6-l.jpg
  摘要:目的 对新疆维吾尔医植物药材图像进行特征提取,并对所研究特征进行分析,探讨其在维吾尔医药材图像分类中的效果,找到适用于维吾尔医药材图像分类的特征,为基于内容的新疆维吾尔医药材图像的检索系统奠定基础。方法 以新疆维吾尔药材中植物药的花和叶为研究对象,先对图像进行预处理,进而提取颜色和纹理特征作为原始特征,并对特征进行统计学分析,运用最大类间距法筛选得到图像分类的主要特征,最后应用Bayes判别分析法对特征的分类能力进行评价。结果 将颜色特征和纹理特征筛选后进行分类,花类图像的分类准确率为85%,叶类图像的分类准确率为62%。利用筛选后的特征对花类图像的分类效果好于利用原始特征分类的效果。结论 与原始特征分类比较,运用筛选后的特征进行分类,对于判别花类药材的效果较好。这为进一步研究维吾尔医药材图像分类和完善特征提取方法奠定了基础。
  关键词:新疆维吾尔植物药材;颜色特征;纹理特征;特征提取;判别分类
  DOI:10.3969/j.issn.1005-5304.2016.01.018
  中图分类号:R29 文献标识码:A 文章编号:1005-5304(2016)01-0078-04
  Xinjiang Uygur Medicine Image Feature Extraction and Discriminant Analysis Based on Color and Textural Features YUN Wei-kang1, Murat HAMIT1, YAN Chuan-bo1, Abdugheni KUTLUK1, Asat MATMUSA2, YAO Juan3, YANG Fang1, Elzat ALIP1 (1. College of Medical Engineering Technology, Xinjiang Medical University, Urumqi 830011, China; 2. College of Public Health, Xinjiang Medical University, Urumqi 830011, China; 3. Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China)
  Abstract: Objective To extract Xinjiang Uyghur medicine image features and analyze the features; To investigate the image classification effect of the researched features; To find the suitable features for Xinjiang Uyghur medicine image classification; To lay the foundation for content-based medical image retrieval system of Xinjiang Uyghur medicine images. Methods The flowers and leaves of Xinjiang Uyghur medicine were treated as the research objects. First, images were under preprocessing. Then color and textural features were extracted as original features and statistics method was used to analyze the features. Maximum classification distance was used to analyze the main features obtained from image classification. At last, the classification ability of features was evaluated by Bayes discriminant analysis. Results Color and textural features were selected and classified. The correct classification rate of flower images was 85% and the correct classification rate of leaf images was 62%. The classification effect of flower images used by selected features was better than classification effect of original feature. Conclusion Compared with the classification of original features, the classification accuracy of flower medicine is higher through selected features. This research can lay a certain foundation for the further researches on Xinjiang Uyghur medicine images
  and the improvement of feature extraction methods.

相关热词搜索:维吾尔 特征 判别 新疆 纹理

版权所有 蒲公英文摘 www.zhaoqt.net