基于烟叶化学成分烤烟香型分类模型的建立
发布时间:2019-08-24 来源: 历史回眸 点击:
摘要:基于烟叶化学数据建立烤烟香型分类模型,然后对各模型进行筛选比较选出最优模型。首先对142个烤烟烟叶样品中的9类成分的63个指标采用行业标准进行检测,然后采用逐步回归法筛选出19个烟叶化学成分,依据这19个指标采用线性判别分析法、Logistic回归、高斯混合模型、分类树、K最邻近法、人工神经网络和支持向量机七种方法进行建模。通过对不同方法建立的模型采用100次随机抽取训练集样本和测试样本计算错误分类率,选择错误分类率较低的模型作为优选模型。经比较发现,线性判别法和高斯混合模型建立的两种香型函数能较好地对未知样品的香型进行正确分类,且效果较好。筛选出的两种优选模型对于烤烟香型分类研究具有一定的应用价值。
关键词:烟叶化学成分;烤烟香型;模型分类法
中图分类号:TS44+1 文献标识码:A 文章编号:0439-8114(2015)05-1220-07
DOI:10.14088/j.cnki.issn0439-8114.2015.05.049
Abstract: Based on the chemical components of tobacco leaves, the classification models of tobacco flavor were established. All models were compared to select the optimal model. 63 components of 9 kinds of 142 tobacco leaves were detected by tobacco industry standards. 19 chemical components were selected by stepwise regression method. Seven methods including discriminate analysis, Logistic regression, Gauss mixture model, classification tree, K nearest neighbor method, artificial neural network and support vector machine were used to establish the models based on the 19 index. 100 randomly selected samples were used as the training sets and test samples to calculate the error classification rate through the establishment of the different methods of models. The model was the preferred model with classification error rate lower than others. By comparision, two kinds of flavor function model (linear discriminate method and Gauss mixed) were better to unknown sample types. Two kinds of optimization models had a certain application value for classifying tobacco flavor.
Key words: chemical components of tobacco leaves; tobacco flavor; model classification methods
目前利用烤烟中化学成分、致香成分对三种烤烟香型进行模式识别已有相关文献报道[1-4]。在国内的研究中,朱立军等[2]对112份市售卷烟样品中20种化学成分采用逐步判别方法进行判别分析取得了较好的分类结果,Zhan等[4]以63个中部和65个上部烟叶为材料,基于其中的67种致香物质对三种香型进行逐步判别分析也取得较好的分类结果并得到很好的应用。目前在利用化学计量学进行模式识别的过程中,已发展出了各种各样的方法[5],采用其他类型的方法是否与经典的判别分析方法具有同样的效果,或是效果要好于经典方法,此方面的研究还未见相关的报道。为此,采用目前较为成熟的经典判别分析方法(LDA)、Logistic回归(LR)、高斯混合模型(Mix)、分类树(Tree)、K最邻近法(KNN)、人工神经网络(CANN)和支持向量机(SVM)七种化学计量学方法,随机抽取不同的训练集和测试集进行分析,拟筛选出分类效果较优且精度较为稳健的模型,以期为烤烟香型分类优化模型的选择提供理论依据。
1 材料与方法
1.1 材料
2011年收集142份烤烟样品,分别来自中国14个省份,16个品种。其中清香型(简称“清”)50个,中间香型简称“中”40个,浓香型(简称“浓”)52个。本次收集的样品均由全国评烟委员会委员组成的评吸专家组对烤烟香型(清香型、浓香型和中间香型)进行鉴定。
1.2 方法
1.2.1 分析检测 在烟叶化学成分中主要对9类成分中的63个指标采用行业标准进行检测。63个指标具体是总糖、还原糖、氯、钾、氮、总植物碱、石油醚提取物、粗纤维素、挥发酸、挥发碱、葡萄糖、果糖、蔗糖、绿原酸、莨菪亭、芸香苷、铁、锰、铜、锌、钠、硼、钙、镁、硝酸根、硫酸根、磷酸根、草酸、丙二酸、苹果酸、棕榈酸、硬脂酸、柠檬酸、亚油酸、亚麻酸、烟碱、降烟碱、麦斯明、假木贼碱、新烟草碱、2,3-联吡啶、叶黄素、胡萝卜素、天冬酰胺酸、组氨酸、丝氨酸、谷氨酰胺酸、精氨酸、甘氨酸、高丝氨酸、天冬氨酸、谷氨酸、苏氨酸、丙氨酸、γ-氨基丁酸、脯氨酸、赖氨酸、酪氨酸、缬氨酸、异亮氨酸、亮氨酸、苯丙氨酸、色氨酸。
热点文章阅读